

Elpro - 33 exp

DESCRIPTION OF THE FUNCTIONS OF THE CONTROL PANEL FOR SWINGING GATES

All the electrical connections are to be made as per the instructions and diagrams that follow. Supply the terminals 24-25 with 230-50 Hz single-phase voltage. The "red led" No. 1 goes on, this is the sign that the PC board is properly supplied. The word "BLOCCO" (Stop) is running from right to left in the display.

PARAMETERS AND MODES. SETTING PROCEDURE

Through the dispaly and by the programming buttons it is possible to access to and change all the functions of Elpro 33 exp.
The programs are devided into parameters (ie. variations of the times) and modes (ie. the functions).)

To gain access to the parameters and modes press the button
\mathbf{A}, the display visualizes the word "CODE" and immediately afterwards " 0 " ie. one of the two possible options of the program:
$-" 0 "$ program is stopped
$-" 1$ " access to program allowed, ie. to parameters and modes

To change from " 0 " to " 1 ", press the button press the button press the button press the button
"ENT"
"ENT"
\mathbf{A}
value " 0 " flashes. Change is allowed. value " 1 " is displayed (flashing)
the value stops flashing. Change is confirmed.
the first parameter "PR1A" is displayed.
Go on pressing the button and the following list of parameters and modes appears in a sequence:

This section explains how to change the parameters and modes:
select the desired option and wait three seconds for the previously set value to appear.
press the button "ENT" the value starts flashing, changing is allowed.
press either $\quad \mathbf{A}$ " A " or " $\mathbf{B " \nabla}$ to increase or decrease the previous value.
press the button "ENT" the value stops flashing, change is confirmed. You can go back to the original menue options
To exit the program:
press the button press the button press the buton press the button press the button

until "CODE" and soon afterwards " 1 " are displayed. value" 1 " starts flashing, ie. changing is allowed. value " 0 " is displayed (flashing). the value stops flashing, change is confirmed. gate status ie. operations to perform are diplayed in words (see the section "gate status on display")

- The button "CLR" allows to exit a parameter or mode without changing its value and, in case a value is displayed, to see which parameter or mode has been previously selected.

PARAMETERS:	PR1A PR1B PR2 PR3 PR4 RR PR6 PR8 PR9A	$=$ "Motor run time M1" = "Motor run time M2" = "Dwell time" $=$ "Delay time in close cycle" = "Stroke reversing pulse time" = "Electric lock time" $=$ "Pre-flashing time" = "Flashing time on cycle end" $=$ "Courtesy light time = "Brake time open cycle" braking	It can be varied from 0 to 150 sec . (Delay in close cycle). It can be varied from 0 to 150 sec . (Delay in oepn cycle). It can be varied from 0 to 255 sec . It can be varied from 0 to 20 sec. It can be varied from 0 to 15 sec . It can be varied from 0 to 15 sec . It can be varied from 0 to 25 sec . It can be varied from 0 to 25 sec . It can be varied from 0 to 255 sec . It can be added to motor run time from 0 to 25 sec . for gate operators fitted with

MODES:
$\overline{\text { MOD1 }}=1$ "1a pair of photocells"
On obstacle removal it reverses gate on closing, stops it on opening
$=0 \quad$ " 10 pair of photocells" $=1$ "Remote control"
$\begin{array}{lll}\text { MOD2 } & =1 & \text { Remote control" } \\ & =0 & \text { "Remote control" }\end{array}$
It reverses gate on closing, no stop on opening
No gate reversing on opening
MOD3 = 1 "Mode of operation"
Any new pulse reverses the gate
= 0 "Mode of operation"
Automatic re-closing
No automatic re-closing, closing is by pulse
$=1$ "Radio"
Step by step, stop in between
MOD4 $=0$ "Radio"
Reverse while gate is moving
MOD5 $=1$ "Pedestrian opening",
In service by holding open button for more than 2 sec.
MOD6 $=1$ "Pedestrian opening"
Out of service
MOD6 $=1$ " "2 pair of photocels"
Out of service
$=1$ "Memory to store times"
Pre-set for connection
MOD7 $=1$ "Memory to store times"
Out of service
$=0 \quad$ "Memory to store times" In service
$\begin{aligned} 1^{-M O D 8} & =0 \\ & =1 \\ & =1\end{aligned}$
$=2$ "Auto/Close" Only with MOD3 = 1 (Automatic) and MOD6=0 (2nd pair photocells connected): on entry after transiting past the inside photocells, the system closes the gate after 2 seconds. On exit affer transiting past the outside photocells, the system closes the gate after 2 seconds.

= 3 "Additional pulsing"

= 4 "deadman control +Additional pulsing" $=5$ "Auto/Close+Additional pulsing"
MOD9 = 0 "blank"

STATUS INDICATION LED's:

LED n. 1:	"llluminated"
LED n. 2:	"Photocells. 1st pair"
LED n. 3:	"Open"
LED n. 4:	"Close"
LED n. 5:	"Stop"
LED n. 6:	"Radio"
LED n. 7:	"Gate status"
LED n. 8:	"Photocells. 2nd pair"
LED n. 9:	"Electric lock"
LED n.10:	"Gate Delay Relay. Close"
LED n.11:	"Gate Delay Relay. Open"
LED n.12:	"Gate Direction Relay"
LED n.13:	"Mains Relay"

normally off. it goes on when the PC board is on voltage.
normally on. it goes off when photocells are obstructed.
normally off. it goes on when an Open pulse is given.
normally off. it goes on when a Close pulse is given.
normally on. it goes off when a stop pulse is given.
normally off. it goes on by any pulse from the radio transmitter.
Flashing. it indicates the status of the gate. See the 24V 3W indicator.
normally on. it goes off when the photocels are obstructed.
normally off. it goes on when the electric lock is energized.
normally off. it goes on during operation.

GATE STATUS INDICATION BY DISPLAY:

FUNCTIONING OF "PULIN 3" PUSH BUTTONS AND THE 24V 3W max. INDICATOR.

- When the gate is: OPENING The 24V-3W indicator flashes every 1 sec. (normal)

OPENING
OPEN
CLOSING
CLOSED
STOPPED

The 24V-3W indicator flashes every 1 sec . (normal) The 24V-3W indicator stays on
The 24 V - 3 W indicator flashes $1 / 5 \mathrm{sec}$. (fast)
The $24 \mathrm{~V}-3 \mathrm{~W}$ indicator is off
The 24V-3W indicator flashes every 2 sec. (slow)
the Pulin led "Open" the Pulin led "Stop" the Pulin led "Close" the Pulin led "Stop" all Pulin led's
flashes
stays on
flashes
flashes
flash

PROGRAMMING NOTES:

- PR1A or PR1B times are to be calculated on the opening cycle individually for each single gate leaf, considering that the respective motors go on running 3 seconds more than the actual gate travel.
If the delay time in close cycle PR3 is set to 0 sec. both gate leafs start together. On opening the delay time is equal to PR3 up to 2 sec. max.
PR4 ie. the stroke reversing pulse is operating only when the system is on fully closed gate position.
- If the electric lock time PR5 is set to 0 sec., the lectric lock is excluded.
- PR6 ie. the pre-flashing time is operating before each opening cycle (or closing cycle if on semi-automatic mode).

PR7 ie. flashing time on cycle end is operating after each complete opening or closing cycles.

- The flashing lamp can be stopped during the dwell time: connect it to terminals 29-30, courtesy light output, and set PR8=0
- The courtesy light time is operating during and after each working cycle. terminals 29-30.
- PR9A and PR9C are only for swinging arm operators with braking feature. To calculate the total opening time you have to consider the motor run time from closed gate position to when brake action starts. To this time you have to add PR9A time so that the motor is running 3 more sec. beyond the actual piston stroke. For braking actuators, the motor run times are to be calculated during the closing cycle.
- If a second pair of photocells is required, MOD6 must be set to 0 . It always reverses the gate travel on closing cycle and stops the gates on opening.
- After powering the system, you can only run a complete opening cycle to allow the control panel to memorize the time setting.
- After an opening cycle you can only run a closing cycle.
- Adjusting is allowed to be made olso while gate is moving and the new setting is memorized immediately.
- The courtesy light time is operating at the beginning of each cycle either opening or closing.

After a stop pulse is given or the control panel is re-powered, led No. 5 Stop stays illuminated, and all the 3 leds of the Pulin push buttons are flashing (stand-by situation when a new command is waited for).

Elpro• 33 exp

TECHNICAL SPECIFICATIONS

Power supply
$230 \mathrm{~V}-50 \mathrm{~Hz}$
Voltage output
Low voltage output 24 V -
E. M. Power

24 V - 10 W
Mains fuses
Secondary fuses
Commanding logic
Relay
Box dimensions
Protection standards
Weight..
......... \qquad
Box material.
M......

TRANSFORMER
Power
Magnetic core
Voltage
Outputs
Working frequency Insulation

1'100 W
6.3 A
1.6 A - 630 mA

Open - Stop - Close
$295 \times 210 \times 110 \mathrm{~mm}$
IP 473
1.90 Kg

16 A - $250 \mathrm{Vac} / 30 \mathrm{Vdc}$

Gray polycarbonate "IQ20"
N.W.: For special applications, ie. to switch on lights, CCTV, etc. SOLID STATE RELAYS
 are recommended to be used only. Other types of relays would affect the microprocessor.

CONNECTION NOTES

1) It is advisable not to expose the control box directly to weather conditions; if mounted outside, a suitable enclosure is recommended to protect it from sunshine and rain.
2) Properly earth the equipment.
3) Bridge terminals $1-2$ if you do not require any photocells.
4) Should two sets of photocells be required, these are to be series connected to terminals 1-2; contact normally closed. In case they are installed parallel to each other, cross install the receivers with the projectors, receiver next to projector of the other set.
5) Bridge terminals $3-6$ if you do not require any keyswitch or push buttons.
6) Fit the mains with a 0.03 Ampere magnetic-thermal circuit breaker .
7) Use $\mathrm{mm}^{2} 1.5$ section wires for single-phase electric motors.
8) The 24 V ~ output, terminals $12-13$ can power supply only 2 pairs of photocells and 1 radio receiver. Should more photocells or receivers be required, an auxiliary transformer is to be fitted outside the control box.
